Editing
Elliptic Distributed Risk Factors in Quadratic Portfolio of Securities
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
Title: Elliptic Distributed Risk Factors in Quadratic Portfolio of Securities Abstract: This research focuses on estimating the Value-at-Risk (VaR) of a quadratic portfolio of securities without Delta and Gamma, using elliptic distributed risk factors. The study employs a numerical method by Alan Genz to reduce the estimation of the quadratic VaR to a resolution of one-dimensional integral equations. The research illustrates the method using mixture of normal distribution and mixture of t-student distribution examples. The results provide an explicit equation with a solution for VaR, applicable to multivariate elliptic distributions. The implications of this study are significant for the financial literature, as it extends the concept of quadratic Delta-Gamma Portfolio VaR and offers a more generalized approach to risk management. Main Research Question: How can we estimate the Value-at-Risk of a quadratic portfolio of securities using elliptic distributed risk factors? Methodology: The study uses numerical estimation to calculate the VaR of a quadratic portfolio of securities. The method involves reducing the estimation of the quadratic VaR to a resolution of one-dimensional integral equations using Alan Genz's numerical method. The research applies this method to mixture of normal distribution and mixture of t-student distribution examples to demonstrate its effectiveness. Results: The research provides an explicit equation with a solution for VaR, applicable to multivariate elliptic distributions. The equation is derived using the given examples and can be used to estimate the VaR of a quadratic portfolio of securities with elliptic distributed risk factors. Implications: The study's findings are significant for the financial literature as it extends the concept of quadratic Delta-Gamma Portfolio VaR and offers a more generalized approach to risk management. The research provides a practical method for estimating the VaR of a quadratic portfolio of securities, which can be applied to various financial scenarios. Additionally, the use of elliptic distributed risk factors broadens the scope of the study, making it applicable to a wider range of risk factors in the financial market. Link to Article: https://arxiv.org/abs/0310043v1 Authors: arXiv ID: 0310043v1 [[Category:Computer Science]] [[Category:Risk]] [[Category:Quadratic]] [[Category:Var]] [[Category:Portfolio]] [[Category:Elliptic]]
Summary:
Please note that all contributions to Simple Sci Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Simple Sci Wiki:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Navigation menu
Personal tools
Not logged in
Talk
Contributions
Create account
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
Edit source
View history
More
Search
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Tools
What links here
Related changes
Special pages
Page information