Editing
Short Cycles Connectivity: A Generalization of Ordinary Connectivity
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
Title: Short Cycles Connectivity: A Generalization of Ordinary Connectivity Abstract: This research article introduces the concept of short cycles connectivity, a generalization of ordinary connectivity. Instead of being connected by a single path, two vertices are now connected by a sequence of short cycles, where two adjacent cycles share at least one common vertex. The study presents efficient algorithms for determining equivalence classes and discusses further generalizations, such as connectivity by small cliques or other families of graphs. The research suggests that short cycles connectivity can be a powerful tool for analyzing large networks and identifying hierarchical structures. Main Research Question: How can we generalize the concept of ordinary connectivity to include short cycles, and what are the implications for network analysis? Methodology: The study uses graph theory to define short cycles connectivity, which is a generalization of ordinary connectivity. The method involves creating equivalence classes of vertices based on their ability to be connected by sequences of short cycles. The research presents an algorithm for determining these equivalence classes, which is shown to be efficient for large networks. Results: The main result is the development of short cycles connectivity, which is shown to be an equivalence relation on the set of vertices. The study also presents algorithms for determining equivalence classes and discusses further generalizations. Implications: The research suggests that short cycles connectivity can be a valuable tool for analyzing large networks. By identifying hierarchical structures and nonhierarchical links, the method can help researchers better understand the complex dynamics of network systems. Additionally, the study's generalizations open up new avenues for further research in graph theory and network analysis. Link to Article: https://arxiv.org/abs/0308011v2 Authors: arXiv ID: 0308011v2 [[Category:Computer Science]] [[Category:Connectivity]] [[Category:Cycles]] [[Category:Short]] [[Category:Research]] [[Category:By]]
Summary:
Please note that all contributions to Simple Sci Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Simple Sci Wiki:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Navigation menu
Personal tools
Not logged in
Talk
Contributions
Create account
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
Edit source
View history
More
Search
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Tools
What links here
Related changes
Special pages
Page information